
March, 2002

Advisor Answers

Returning arrays

VFP 7

Q: I've heard people say that you can return an array from a function in
VFP 7, but I can't make it work. What am I missing?

–Name withheld by request

A: Your informants are correct. VFP 7 allows you to return an array.

However, the conditions for doing it mean that it's only practical when
the "function" is a method and the array is a property of the same

object.

The rule is that the array must be in scope after the function finishes

running. So, it can't be a local or private variable. If an array already
exists in the calling routine, you might as well pass it as a parameter

and let the function modify it. Here's an example that shows how you
can return an array, but it uses bad coding practices:

* Calling code
* This is an example of what NOT to do
PUBLIC aResult[3]
LOCAL aHoldResult[3]

aHoldResult = MyFunc()

RETURN

* Here's the function
FUNCTION MyFunc

* Do something with the array
aResult[1] = 7
aResult[2] = 12
aResult[3] = 17

RETURN @aResult

It's easy to see that the function depends on the existence of the

aResult array and that there's really nothing gained in this situation
(and a fair amount lost in readability and maintainability). The example

does show one important item, though – to return an array, you
precede it with the "@" symbol in the RETURN statement.

However, when you're dealing with a class definition, the ability to

return an array is pretty cool. Consider the problem of taking color
values apart into their red, green and blue (RGB) components. The

FoxTools library contains a function RGBComp that does this, but in
addition to the color value, you have to pass three variables by

reference to hold the results. With the new array return capability, we
can put the values into an array and return them together.

Here's the class code, available in Colors.PRG on this month's
Professional Resource CD (which also contains code to demonstrate the

technique):

DEFINE CLASS Colors AS Custom
* Color handling code
DIMENSION aRGB[3]

FUNCTION RGBComp(nColor) AS Array
* RGBComp
* Returns the Red, Green and Blue Components
* of a color in an array

This.aRGB[1] = -1
This.aRGB[2] = -1
This.aRGB[3] = -1

IF VARTYPE(nColor)="N"
 This.aRGB[3] = INT(nColor/(256^2))
 nColor = MOD(nColor,(256^2))
 This.aRGB[2] = INT(nColor/256)
 This.aRGB[1] = MOD(nColor,256)
ENDIF

RETURN @This.aRGB

ENDDEFINE

You might call the method like this:

LOCAL oColors, nColor, aColors[3]

nColor = 8388736
oColors = NewObject("Colors","Colors.PRG")
aColors = oColors.RGBComp(nColor)

? "The original color is " + TRANSFORM(nColor)
? "Red = " + TRANSFORM(aColors[1])
? "Green = " + TRANSFORM(aColors[2])
? "Blue = " + TRANSFORM(aColors[3])

RETURN

In this case, because the array aRGB is a property of the class, it
continues to exist when the method is finished, and thus the values in

the array can be copied into the aColors array in the calling program.

There's one other restriction on the returned arrays. The array you
assign the result to must be a variable, not a property of another

object.

The VFP Help indicates that this was made primarily for building COM

servers, but I think we'll be finding lots of uses for it in conventional
VFP code, as well.

–Tamar

